ENANTIOMERIC SYNTHESES OF 6(R), 7(R) AND 6(S), 7(S) **trans- AND cis-LAUREDIOL**

B. Añorbe, V.S. Martin, J.M. Palazón and J.M. Trujillo Instituto Universitario de Quimica Organica Universidad de La Laguna, Tenerife, Spain

Abstract: The title compounds have been synthesized by using acetylenit coupling procedures, asymmetric epoxidation and stereo- and regio-selective openings of the epoxides.

From the red algae of the genus Laurencia have been isolated a wide variety of halogenated cyclic ethers characterized by a straight-chain C_{15} atom skeleton and a terminal enyne function¹⁾. Related compounds have also been found in Aplysial) probably having a dietary origin in Laurencia. Irie and his coworkers²⁾ reported the isolation from *Laurencia nipponica* Yamada of optical isomers with $6(S)$, $7(S)$ and $6(R)$, $7(R)$ configurations of 6.7 -di $hydroxy-3, 12-trans-9-cis-pentadeca-3, 9, 12-trien-1-yne$ (trans-laurediol) $(1,2)$ and 6,7-dihydroxy-3,9-cis-12-trans-pentadeca-3,9,12-trien-l-yne (cis-laurediol) $(3, 4)$ as well as their corresponding acetates $(5--\rightarrow 8)$.

These compounds have been repeatedly proposed as biosynthetic precursors of the cyclic ethers¹⁾ by electrophilic cyclization²⁾. In this communication we report the total syntheses³⁾ of these metabolites in their enantiomeric natural form by a general methodology based on acetylenic coupling catalyzed by copper⁴⁾, asymmetric epoxidation⁵⁾ and regio- and stereo-selective openings of the epoxides⁶⁾.

For the synthesis of 1 and its acetate 5 a dienynol 17 was prepared from ethyl bromide and propargyl-0-THP ether by acetylenic coupling catalyzed by copper (I) chloride⁴ (Scheme I)⁷).

17 was selectively hydrogenated using Lindlar's catalyst 8) in 87% yield and submitted to asymmetric epoxidation under the standard conditions⁵⁾,

Ti(OPrⁱ)₄, D-(+)-diethyl tartrate, tert-butyl hydroperoxide, CH₂Cl₂, -20^oC, 20 hrs., giving the epoxyalcohol 19 in 82% yield with over 95% ee⁹⁾, $|\alpha|_D^{25}$ -10.2° (c 3.45, CHCl₃) (Scheme II).

At this point of the synthesis, we need the isomerization of the $2,3$ to the threo-1,2-epoxyalcohol to create the right configuration of the diol system by a carbon nucleophile attack to the terminal epoxide at the C-l position. The described procedure⁶⁾ using titanium (IV) isopropoxide assisted opening of chiral 2,3-epoxyalcohols from E-allylic alcohols has proved to be an excellent way to obtain <u>21</u> in 65% yield from <u>19</u>. The <u>threo</u>-1,2-epoxid $2\frac{1}{2}$, α_{10}^{α} -10.7^o (c 2.09, ether), was protected with ethyl vinyl ether, in CH_2Cl_2 , using pyridium p-toluenesulphonate as catalyst¹⁰⁾ and was treated with the lithium salt of propargyl-O-THP ether (l.5 equiv.) and $\texttt{BF}_3.\texttt{OEt}_2{}^{\texttt{11}/}(l$. equiv.) at -78⁰C for 0.5 hr. to give <u>23</u> in 73% yield (Scheme <u>III</u>).

The acidic deprotection of <u>23</u> in methanol, protection of 24 with 2-methoxypropene in CH₂Cl₂ and deprotection of some <u>25</u> formed with methanol and a catalytic amount of acetic acid yielded 26, 85% yield, $|\alpha|$ 6⁵⁻25.4⁰ (c l.65, CHCl $_3$). Reduction of the yne-function with lithium aluminum hydride 12J in THF at 0°C for 2 hrs. led to 27 in 93% yield $|a|\frac{2}{9}$ ⁵-25.4° (c 1.65, CHCl3). This compound was oxidised with excess of manganese dioxide in CH_2Cl_2 at room temperature and treated without purification with triphenyl phosphine (5.5 equiv.) and carbon tetrabromide (2.7 equiv.) at 0°C in CR_2Cl_2 for 2 hrs. to yield 29, $|a|_D^{25}$ -27.9^o (c 2.40, CHCl₃), in 73% overall yield ¹³⁾.

16, R=H

Treatment in ether for 10 min. with 2.1 equiv. of n-BuLi¹⁴) gave 30 in 82% yield, $|\alpha|_D^{25}$ -25.0^o (c 1.32, CHCl₃).

The deprotection of 30 with methanol and a catalytic amount of p-toluenesulphonic acid gave 1, $|a|_D^{25}$ -14.7^o (c 1.2, CC1₄) in 85% yield. Acetylation under standard conditions (Ac₂0, Py) gave the diacetate 5, $|\alpha|^{25}_{D}$ +5.3o (c 0.7, CHC13) in 95% yield. According to the optical purity observed in the epoxide 25 these products must have more than 95% ee^{14} .

The syntheses of the geometrical isomer cis-laurediol 3, $|\alpha|_D^{25}$ -9.3^o (c 0.9, CHCl₃)¹⁴) and its corresponding acetate 7, $|\alpha|_D^{25}$ +3.5 ^o (c 0.8, CHCl₃), were performed in a totally similar manner, but using Lindlar's hydrogenation of $\frac{26}{5}$ to get the $\frac{7}{2}$ -olefin¹⁵⁾. The syntheses of isomers $\frac{2.6}{5}$ and $\frac{4.8}{5}$ were carried out following a similar procedure but changing the isomer of the tartaric acid ester used at the asymmetric epoxidation step.

Acknowledgement: This research was supported by a grant from the CAICYT (MEC) of Spain, nQ 3064-83. B.A., J.M.P. and J.M.T. thank the MEC for fellowships. Special thanks are due to Professor J.D. Martin for helpful discussions.

References and notes:

1) a) Moore, R.E.; Algal Nonisoprenoids in Marine Natural Products, Ed. by P.J. Scheuer, N.Y., 1978, Vol I, 44-121.

b) Faulkner,D.J.; Natural Products Report, 1984, I, 251-280.

- 2) Kurosawa, E.; Fukuzawa, A., Irie, T.; Tet. Lett., 1972, 21, 2121.
- 3) A total synthesis of $6(S)$, $7(S)$ trans-laurediol 1 has been recently reported: Fukuzawa, A.; Sato, H.; Miyamoto, M.; Masamune, T.; Tet. Lett., 1986, 27, 2901.
- 4) Taginachi, H.; Mathai, 1-M.; Miller, S-1.; Orq. Synth., 1970, 50, 97.
- 5) a) Katsuki, T.; Sharpless, K.B.; J. Am. Chem. Soc., 1980, 102, 5974.

b) Martin, V.S., Woodard, S.S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K.B.; J. Am. Chem. Soc., 1981, 103, 6237. c) Hill, P.G.; Rossiter, B.E.; Sharpless, B.B.; J. Org. Chem., 1983, 48, 3603.

- 6) See the preceding paper.
- 7) a) i)n-BuLi, THF, HMPA, -78° C, 1 hr.; ii)EtBr, -78° C-- \Rightarrow R.T., 14 hrs.; iii)HCl (conc.)(cat.), MeOH, R.T'., 10 hrs., 92% overall yield: b) i)LiAlH₄, THF, reflux, 2 hrs. 87%; ii)Br₃P, pentane, 0° C, 0.5 hr., 78%; c) i)BrMgC \equiv CCH₂OTHP, THF, Cu₂Cl₂ (cat.), 0^OC-->reflux, 4 hrs.; ii)(C_6H_5)3PBr⁺Br⁻, CH₂Cl₂, R.T., 74%; d) BrMgC=CCH₂OTHP, THF, Cu₂Cl₂ $(cat.)$, Me₂S, 0° C-->reflux, 4 hrs., 83%; e) i)HCl (conc)(cat.), MeOH, R.T., 5 hrs.; ii)LiAlH₄, ether, R.T., 14 hrs., 81% overall yield.
- 8) 17 must be carefully purified in order to obtain a good rate in Lindlar's hydrogenation.
- 9) The optical purities of all the epoxides were checked by using NMR on the epoxyalcohol acetates with Eu(hfbc)₃ as chiral shift reagent and/or the Mosher's ester.
- 10) Any attempt to protect the hydroxy group under basic conditions gave a substantial amount of isomerization to the 2,3-epoxyalcohol.
- 11) Yamaguchi, M.; Hirao, I.; J. Chem. Soc. Chem. Comm., 1984, 202.
- 12) Magoon, E.F.; Slaugh, L.H.; Tetrahedron, 1967, 23, 4509.
- 13) Corey, E.J.; Lansburg, P.T.; Cashman, J.R.; Kantner, S.S.; J. Am. Chem. Soc., 1984, 106, 1501.
- 14) The reported optical rotation for 6(R), 7(R) <u>trans</u>-laurediol <u>2</u> obtained from laurencin by Zn-AcOH-EtOH treatment is $|\alpha|$ \vert +27.2^o. In a similar manner the value for $6(S)$, $7(S)$ cis-laurediol is $\alpha \mid n-19.5^\circ$. See Ref. $2.$
- 15) Corey, E.J.; Ruden, R.A.; <u>Tet. Lett.</u>, 1973, 1495. By this procedure a ratio of 1:1 of 30 and the cis isomer was reached. Both products were separated by column chromatography.

(Received in UK 3 August 1986)